ECG's: The Basics

David Liss, BA, RVT, VTS (ECC, SAIM)

Basic Conduction:

ECG: Electrocardiogram- Studies the electrical activity generated by the heart. The heart has two components, a mechanical pump, for blood flow, and an electrical generator to push the pump.

Depolarization/Repolarization

Depolarization- Electrical current transfer across cardiac cell membranes causing contraction. Ca++/K+ ions move into cell.

Repolarization- Movement of ions back out of cells, relaxing of muscles. K+/Na+ move out-K+(quickly to establish negative gradient)

This process allows the muscle cells to contract in sequence, allowing a synchronized contraction of many, many muscle cells, allowing the heart to pump blood to the lungs and body.

Normal Conduction Pathway:

ALL POSSESS AUTOMATICITY (or the ability to discharge without outside stimulus)

SA Node

Initiates electrical signal-Under normal physiologic conditions Is in right atrium Firing of SA node sends contraction signals through the right atrium

AV Node

Directs electrical signal towards the ventricles
Is just above the right ventricle
Failsafe- Can fire on its own (automaticity)-If the SA node stops working

Bundle of His

Large bundle of electrical fibers directing the signal towards the Bundle Branches

Right/Left Bundle Branches

Separate groups of electrical fibers powering the right and left ventricles

Purkinjie Fibers

Terminal fibers at the end of the conduction sequence Can fire on their own (automaticity)

Cellular Electrical Potentials:

Resting

Cardiac cell is polarized (relative negative inside as opposed to outside cell) Na+/Cl- Highly Extracellular K+-Mainly Intracellular

Depolarization

Stimulus applied Na+/Cl- rush into cell causing a net positive effect intracellularly Ca2+- also shifts inside

Magnitude of electrical activity is proportional to the length and diameter of the muscle Dilitation- Lengthening and Hypertrophy-Thickening can see an increase in electrical activity on ECG

Repolarization

K+ begins to leave cell as permeability increases

The Sodium-Potassium Pump removes intracellular sodium

Normal ECG:

The Waves

P-wave

First component of normal ECG and is produced by depolarization of the atria.

Width indicates time for contraction

Height indicates amount of current generated

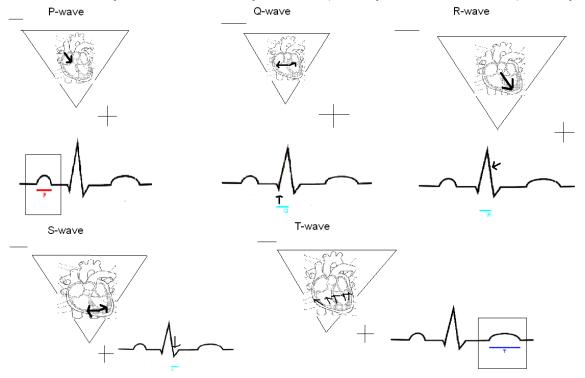
Positive in Lead II

QRS Complex

Second Component comprised of 3 separate waves in the ECG

Represents ventricular depolarization

Q-wave- First negative wave following the p-wave


R-wave- First positive wave after the p-wave

S-wave- Second negative wave after the p-wave

T-wave

Final positive wave after the QRS Complex

Represents Ventricular Repolarization (atrial repolarization hidden in QRS Complex)

Basics of Arrythmias:

Questions to ask when interpreting ECG's:

-Is the heart rate normal or abnormal?

- -Is the rhythm regular or irregular?
- -Can I identify P waves and QRS-T complexes?
- -Is there a P-wave for every QRS and a QRS for every P-wave?
- -Do all the complexes look roughly the same length/shape/size?

Slow rhythms:

Sinus Bradycardia

Abnormal rate

Regular rhythm

Yes PQRST

Yes P for QRS and QRS for P

Complexes look the same-Complexes look "sinus" Or Normal QRS

First Degree AV Block

Heart rate abnormal

Irregular

There are p-wave and QRS Complexes

Yes P for every QRS or QRS for every P

Complexes do not look the same, elongated P-R interval

Third Degree AV Block

Heart rate abnormal (slow)

Irregular rhythm

There are p-waves and QRS Complexes

Not a p for every QRS or QRS for every P

Complexes do not look the same (VPC's interspersed)

There is no relation between P-waves and QRS complexes

Fast rhythms

Sinus Tachycardia

Abnormal rate

Regular rhythm

Yes PQRST

Yes P for QRS and QRS for P

Complexes look the same-QRS is Sinus

Ventricular Tachycardia

Abnormal rate

Appears Regular

No P waves QRS Complexes wide and abnormal

No P for QRS or QRS for P

Complexes may look the same or different depending on where in the ventricle the electrical signal has originated from

Ventricular Fibrillation

Unable to determine rate

Not regular

No P waves/QRS Complexes

No P for QRS or QRS for P

There are no identifiable complexes

THIS IS A RHYTHM OF CARDIAC ARREST!

Atrial Fibrillation

Atrial rate-Very fast
Ventricular rate-Slow to fast
Irregular rhythm
No stable P-waves present, appear as fibrillation
Not a regular PQRST configuration
QRS Complexes sometimes normal morphology

Supraventricular Tachycardia

Atrial/Ventricular rate very fast, sometimes 300+ BPM Irregular (may speed up and/or slow down-Paroxysmal) P-waves may or may not be present Appears to be a QRS for every P wave QRS Complexes are regular to thin

Rhythm's with Premature Beats

APC's

Premature firing from an atrial focus
Heart rate usually normal to slow
Irregular rhythm (premature beat present)
P-wave may or may not be present
QRS for every P of non premature beats
QRS of normal morphology because a

VPC's

Heart rate normal to slow or fast
Irregular rhythm (Premature beats present)
P-wave not present with premature beats
QRS for every P with normal Sinus beats
QRS of wide and bizarre morphology of premature beats
Premature firing of the ventricles-Can occur at multiple foci-Multi-focal